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A PLANE STEADY VORTEX FREE BOUNDARY
PROBLEM: EXISTENCE AND UNIQUENESS
RESULTS USING THE COMPLEX METHOD

©A. ToRrFELLI

1. Introduction.

The aim of the present paper is the study of a free boundary problem connected
with the steady plane irrotational vortex motion for an incompressible fluid. Let
us now describe formally this problem (a precise formulation will be done in the
next section).

Let us assume that Q is the region of the complex plane occupied by the fluid
and that 0 € Q is the singularity of the vortex. If ¥ : Q — {0} — R is the
stream function defining the motion, then we have that ¥ is a harmonic function
in Q — {0} (since the mouvement is steady and irrotational). Near the singularity
of the vortex we have also the following asymptotical behaviour: ¥(z) ~ —log |z|.
The abowe facts can be precised by the following relations:

V() = B(z) = log|z| in © — {0}, (1.1)

where: 2
B: @ — R such that AB =0 in Q. (1.2)

We assume also that Q is "like a ball” which wraps around the singularity of
the vortex in 0. Two conditions apply on the (frec) boundary of €2 (¢, ¢z, g being
real constants, the constant g being the gravity acceleration):

¥=rc, %|(Vll'}{:)f“'+glm:=v-_>, on o2, (1.3)

The first one of such relations tell us that the boundary of € is a streamline; the
second one is a consequence of Bernoulli law (assuming the external pressure as a
constant). Notice that in (1.3), the constant ¢ is arbitrary, whereas the constant
¢y is an unkown quantity. To obtain a well-posed problem, we must impose a
further condition: for instance we can specify the value of the speed in a assigned
point of § (see Problem A later).

In what follows the previous problem is studied using a complex method. [ begin
giving a precise complex mathermatical formulation of the problem (see Problem A
in section 2) and, in section 3, (by a suitable analytical transformation) reducing
it to a new problem defined in the unit ball of the complex plane. The solution
of the (transformed) problem can be represented by an integral formula using the
classical complex Poisson kernel (see section 4). This fact allows us to characterize
the boundary value of the (transformed) solution as a fixed point for a suitable non-
linear operator (see Problem B in section 5). This formulation can be considered
as a weak formulation of the physical problem since different solutions of the
original problem give rise to different solutions of the weak formulation. Afterwords
(section 6) an existence theorem is given for the weak formulation (for any value
of g > 0) and an uniqueness theorem is also given (when g > 0 1s small enough).
These results imply also an uniqueness theorem of the physical formulation given
by Problem A (always when g > 0 is small enough).

2. Precise mathematical formulation of the problem.

Since §2 is "like a ball”, to the harmonic function I3 introduced in section I, we
can associate a harmonic function A: Q — & (with A(0) = 0) such that A +iJ3
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is a holomorphic function on 2. As usual we could consider the speed potential
function:

P(z) = A(z) + arg 2/i. (2.1)

where arg is the principial branch of the argument function. Then we have that
the function @ + 1 W is a holomorphic function only in the open set:

V=Q-{:eQ: lmz:<0, Rez=0}.

More suitable is the use of the holomorphic function # : ©Q — € (given up to a real
constant) given by A+i B. Recalling (1.1). we obtain that ¥(z) = Im F'(z)-log |z|.
Hence:
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[n terms of the function I, the problem described 1 can then be stated precisely
in the following way:

Problem A. Given g > 0, we look for a couple {€2. '} where Q is an open
subset of " with 0 € © and such that there exists an analytical, simple, closed,
positively oriented path 4 : [=1,1] — € having Q as the unique bounded con-
nected component of €' — 5([-1, 1]) and:

A1) = =v(~1), te[-1.1], (2.3)

I (1) < hms(f) < lm=(0). 1€ [-1. i}.. (2.4)

Moreover /€ H(2) (that is [ is a holomorphic function in an open set containing
) with Re (0) = 0. On the boundary of € we preseribe also:

.

D F(zy = loglz|. |I(2) —ifz]* + 2¢1mz = constant, = € 9, (2.5)
o ol T DI 96
F'(+(0)) = i UH (2.6)

By the hyphotheses it turns out that 5 (the boundary of €2) is a closed path
which is symmetric with respect to the imaginary axis and which winds, in the
positive sense, exactly one time, around the points of §2. We also have that +(0)
(resp. v(1) ) is the top (resp. the bottom) of +([—1,1]) (and of 2 ). The relation
{2.5) 1s the translation of (1.3) in terms of the function F (with ey = 0 ). By the
relation (2.2), we can verify easily that the relation (2.6) simply preseribes that
the speed in the highest point of 4{{~1.1]) is 1. Notice that the constant in (2.5)
is not a datum of the problem.

if g = 0 then F = 0 and € given by the unit disc of the complex plane is a
solution of Problem A.

3. Transformation of the problem.

From now on, {§2. '} will be a solution of Problem A We can now construct
the following holomorphic function:

A — C defined by A(z2) = —izexp(iF'(2)). (3.1)

Remark 3.1, It easy to verify that the function A can be expressed in the
following way (the function @ is defined n (2.1) ):

Alz) = expli(@(z) +i1W(2))].

where this relation has a meaning,
We can now prove (10, 1) being the unit dise of €7):
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Proposition 3.2. The map A is a conformal mapping of € on D(0,1). We
have also:

A=T)=A(2), A(-7)=-A'(2), z€Q, (3.2)
AG(0) =1, A(3(=1)) = A(+(1)) = =1, A'(+(0)) = —i, (3.3)
Nz} =z [F(2)= ;]vxn(i F(z)). 2€9-{0}. (3.1)
JA'(2)]? + 2gImz = constanmt, |A'(z)| > 1, z € dN. (3.5)
Proof: By the maximum principle it follows that
Im¥(z) > loglz|, z€Q-{a} (3.6)

By the definition of A, it follows that [A(z)] = |z[exp(=Tm F(z)). (z € Q). Hence,
recalling (2.5) and (3.6), we obtain:

A(OQ) C 8D(0. 1), A(Q) C D(0.1). (3.7)

If we put I'(t) = A(4(1)). t € [=1,1], the we have that [' is a smooth path and
that I'* = I'([=1,1]) € a1(0,1). By the argument principle it follows that:

n(l’.0) = gl— —lvf'.l".: = ’—1-—_ / -‘-l-(-:-) dzi=1\V

L e el S

where n(I',0) 1s the winding number of I' around 0 and N is the number of zeros
of A in §2. (counted according to the multiplicity). By (3.1) we have that A(z) =0
if and only if z = 0 (this zero being simple ): hence n(I',0) = 1. Taking into
account of (3.7), it follows that [ = 9D(0, 1). Since n(l'.w) is constant in every
connected component of €'— ', we obtain that n(I'.w) = 1. for all w € (0, 1).
that is:

il Sy / A e Dl

200 fioz—w B Jo Al2)—w

where M is the number of zeros of the function z — A(z2) — w in . Hence for all
« € D(0.1}) there exists one and only one z € Q such that A(z) = w. This lact
proves that A is a conformal mapping of € on {0, 1). Using well known results
(see. for instance, [1], cap. VI Theorem 1) we obtain soon that A can he extended
analvtically to the boundary.
The relations (3.2)-(3.4) can be obtained easily using the definition of A and
the simmetry of §2. The relations (3.5) are a consequence of (2.5).
Thanks to Proposition 3.2, we can introduce the following function:
L: D(0,1) = C defined by: L(w)=iAN (A" (w))= ———". - (3.8)
(A~1)(w)

Proposition 3.3. We have that:

L e H(DO. 1)), (3.9)

L(@) = L{w) 20, w e D0,1). (3.10)

L=t (3.11)

1< |Le)t=1+4g / Im[ei! L(ei)]dt, v € [-7, 7 {3.12)
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Proof: The relations (3.9)-(3.10) are casy consequences of the simmetry of
and of Proposition 3.2, Taking z = A7'(¢') in (3.5). we have:

JNIATENPE +29Im A (') = constant, v € [—m, 7). (3.13)
By an casy caleulation it follows that:

d =t : expliv) expliv)L(exp(ir))
s o 1 et S e i
dv ( el Liexp(iv)) {L{exp(iv))]*

and differentiating the relation (3.13), we obtain:

d I fexpliv) L{exp(ir))]

w5\ ‘\—t L }:‘,;__.2-‘ : 3
5, e 2 [Liexp(iv))[?

which imphes the equality in (3,12} (the inequality in (3.12) being a consequence
of (3.5) ). Finally the relation (3.11) can be obtained by an easy caleulation.

4. Integral representation of the problem.

Let us now consider the elassical complex Poisson kernel:

Ho(v) = :%:‘_ ref0.1]. reR
Put also:;
Po(v) = Re H (v). Q.(v)=1ImH.(v). (1.1)

which are (respectively) the ordinary (real) Poisson kernel and the so-called con-
Jugate Poisson kernel, Then we have:

Theorem 4.1. The function [ may be represented as:

1
Lire') =expl
Lo ) = expy

™

/ Ho(v = O log LD d),  (r.v) € [0.1[x[-7.7]. (4.2)

Proof: By (3.9) and (3.10) we obtain that log|L] is a harmonic function in
{0, 1). Henee, by the mean value theorem, it follows that:

TR : Flas .
og L = — e Vde = — | L(e™ )Y dv. 4.
log, |1.(0)] 2:.[.,, log |£.(¢i* )] dt M/ﬂ ol D(s )M (4.3)
Put now:
Glre™) :vxp(ﬁl; / He(v = tylog| L' dt). (r.v) € [0, 1[x][-m, 7]

We must prove that L = 7 in D(2,1). Notice that:

T

i |G ') = ]imc'xp(—]- [ Po(v = O)log |[L(e") " dt) = |L(")]
r1l rl 8 :

LR Y 4

and then, by the maximum modulus theorem for holomorphic functions. this im-
plies that [G(2)/L{z)] < 1 (z € D(0,1)). Since, by (4.3), we have that G(0) =
HL(0)]. it follows that |G(2) = |L(2)] (z € D(0.1)). Because |i{||‘| = G =L
the theorem is proved.

Theorem 4.1 gives an integral representation of the function L. We remark also
that the relation (1.2), connected with the equality (3.12). suggests a fixed point
procedure to characterize the boundary value of L (that is the values of L(e™),
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with v € [-m, 7]). Actually, if we propose a starting value of L on aD(0,1). we
can evaluate the value of |L(eV)|? (using the relation (3.12) ). Replacing after
this value in the integral representation formula (4.2), we obtain the value of  in
D(0, 1). Finally, taking the trace of L on dD(0,1), we must find again the starting
value of L on the boundary. This fixed point procedure will be used to study the
present problem (see later). This method can be also employed for the numerical
treatment of the present problem (see [6]).

5. Reduction to the boundary.

If we put E(v) = L(e'"), taking r T 1 in (4.2), it follows (recalling also (4.1) ):

E(v) = |E(U)Eli%rllexp(é Q-(v—t)log|E)|*dt), veR  (5.1)
It is well known that (see for instance [5]):
Iim(«Lf Q.(v—t)h(t)dt = (Eh,v), veER heC" (R R), (5.2)
il 8T Joy

where = is (a variant of) the so-called conjugate operator defined by:

= e e 1o T h(v+t)—hv-1)
(Zh)(v) =(Zh,v) = P f_ﬁ S1a(l2) di.

Notice that the definition of =, suitably adapted by the use of a principalvalue
integral, can be extended to h € L' (see again [5]). Roughly speaking, the math-
ematical meaning of the conjugate operator is the following: to the trace on the
boundary of a harmonic function the conjugate operator associates the trace of its
harmonic conjugate function.

Let now (a €]0,1] ):

W, = {h € C**(R,R): h(v) = h(-v) = h(v+27), v € R}, (5.3)

with the norm:

|h(v + t) = h(v)]

ME , vt €]—m, m{witht # 0}

liAlla = sup {|h(v)], v €]—m, 7 [} +sup {

We have that (o €]0, 1[)
=: W, — W, is a linear and contiﬁuous map, (5.4)
which is a result due to Fatou [3] (see also [2] or [4]). Set now:
x = {n€ C%R.C): n(v) =n(-v) =n(v+2r), veE R}, (5.5)

with the norm:
linllo = sup {In(v)], v€]-m =[}

and define:
M={nex: nllo <exp(gm}.

Put now:
z; ifir =k
P(z)={ (z2+1)/2, ifzel01]
%: lf.l’.‘ <0<
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and (A>0, n€x):

(Sxm)(v) = (Sx M v)der = P(1+ 4,\] Im[en()]dt), vER.  (56)

0
Thanks to (3.12), we have that:
|E(v)|* = (Sg E)(v), vER. (5.7)
Let us consider the map: 2
F: Mx[0,g9]—x,
defined by:
(Fan)(v) = (Sxm)'/* (v) exp(i(E log Sx n)())-

We can now state the following:
Problem B. We look for a function E € M such that 7, ' = E.
We have that:

Theorem 5.1. The function E(v) = L(e'") is a solution of Problem B.

Proof: By Gronwall Lemma and (5.7), we obtain easily that |E(v)| < exp (g7)
(v € R): hence E € M. Recalling the relations (5.1), (5.2) and (5.7), finally we
obtain that £ = F; F.

Remark 5.2. It is immediate to verify that two different solutions of Problem A
give raise to different solutions of Problem B. Hence Problém B can be interpreted
as a weak formulation of Problem A.

6. Existence and uniqueness results for Problem B.

By an easy calculation (for more details, see [7]), it follows the following result
in the case in which the gravity acceleration is small enough:

Theorem 6.1. There exists 6 > 0 sufficiently small such that, if 0 < g < é, then
F(M) C M and the map F : M — M is a contraction mapping. Hence, if g is
small enough Problem B has one and only one solution.

Remark 6.2. By the previous theorem and by Remark 5.2, we obtain an
uniqueness result for Problem A in the case in which g is small enough.

The following further existence result for Problem B can be obtained by the
method of topological degree:

Theorem 6.3. For every g > 0 there exists a solution of Problem B.

Proof: If ¢ =0, p = 1 is the only solution of Problem B.
Let us assume now g > 0. An easy application of Gronwall Lemma gives us:

VneM, VA€ ([0,g] (Fan=n=>n€eM), (6.1)

which means that no fixed point of Fx(A € [0, g) exists in IM.
Since Fp, =1 € M, it follows that (see [8], Th. 4.3.1 and Th. 4.3.6):

deg (I — Fo, M, 0) = deg(l — 1, M, 0) = deg(], M, 1) = 1. (6.2)

Let also: =
Z: Mx|[0,g] = W,
defined by:
(Zx n)(v) = (log Sx n)(v),
[t is easy to verify that the map Z is continuous. The use of (5.4) yields:

=: W) — x is a linear and completely continuous map. (6.3)

This result implies that F is a homotopy of compact transformations on M; hence
(see [8] Th. 4.3.4):

deg (I — Fo, M, 0) = deg (I — F4, M,0) = 1, (6.4)
which says that there exists E € M such that £ - F, F = 0.

132



= R A ]

o0

REFERENCES

. Ahlfors L.V., Compler Analysis, McGraw-Hill, 1960.
. Duren P.L., Theory of HP spaces, Academic Press, New York, 1970.
. Fatou M., Serics trigonometrigues et series de Teylor, Acta Matematica XXX (1906}, 335~

400.

. Garnett J.B., Bounded analytic functions, Academic Press, New York, 1981.

. Helson H., Harmonic analysis, Adisson Wesley, London, 1983.

. Lezzi A., paper in preparation.

. Lezzi A. - Torelli A., On the use of the complex method in the study of a vorter free boundary

problem, submitted to Math. Anal. and Appl..

. Lloyd N.G., Degree Theory, Addison Wesley, London, 1983.



